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ABSTRACT

The effects of trim on stability of motion during depth

control of submersible vehicles are analysed. Full state

feedback control is used to provide stable response in the dive

plane, and feedforward control is used to ensure steady state

accuracy. A compli s,, of stability maps is generated for

various values of meta -ntric height, longititunal center of

gravity/center of buoyancy separation, forward speed, and

control law time constant. The 'esults clearly indicate ranges

of parameters that should be chosen in design and operation of

a given vehicle.
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ENCL&ATURE

A Closed loop dynamics matrix for the
linearized system

a Control surface coordination gain
b(x) Local beam of the hull
B Vehicle buoyancy
B Control matrix in state space
CO Quadratic drag coefficient
c11c2  Coupled heave and pitch terms
dq,,d Cross flow drag terms

Bow plane deflection
5.,5 Stern plane deflection
I, Vehicle mass moment of inertia
II, IP Cross flow drag terms
krk2,k 3 ,k 4  Controller gains in e,w,q, and z
KO Feedforward gain
m Vehicle mass
M Pitch moment
M. Partial derivative of M w.r.t. a
E Pitch angle
q Pitch rate
TC Time constant
U Forward speed
UO Nominal speed
w Heave velocity
W Vehicle weight
x State vector
xs, ZB Body fixed coordinates of vehicle

center of buoyancy
XG, ZG Body fixed coordinates of vehicle

center of gravity
z Deviation off the nominal depth
ZGB Vehicle metacentric height
Z Heave force
Za Partial derivative of Z w.r.t. a



I. INTRODUCTION

The fundamental goal of submarine control is to reach and

maintain ordered depth. Experimental designs involve expensive

model testing such as Darpa Suboff Model (DTRC Model 5470)

[Ref. 6]. Much research has been done in depth control of

submarines [Ref. 3,5]. Our goal is to develop an analytic

method to determine the stability properties of a design.

The stability of a design will have a significant impact

on its responsiveness. A vehicle with a large margin to

instability will not be very responsive. The problem becomes

one of determining how close to the margins we can get without

a total loss of stability. By expanding the scope of our

research to include nonlinear terms we are able to define the

limits of stability and therefore margins.

Previous studies analyzed stability properties of the

system, specially static bifurcations (Ref. 2] and

bifurcations to periodic solutions [Ref. 1]. The latter study

which is used as a basis for this work, was restricted to

level, zero trim flight paths.

The purpose of this thesis is to develop a program for

finding the limits of stability for an out of trim submarine

at moderate and high speeds. These limits are mapped using a

Hopf bifurcation analysis program included in the Appendix.



II. EQUATIONS OF NOTION

The motion of the submersible in the vertical plane can be

modeled by four coupled nonlinear differential equations for

pitch rate (q), heave velocity (w), pitch angle (e) and heave

(z). With a body fixed coordinate frame at the vehicle's

geometric center , we can express Newton's equations of motion

as

neh-Uq -z q X•_4) =z$•+Z .+ 0+ Z 86b + Vz + zw + Zqq
(2.1)

-rp Cob(x) (W -xq)J dx
(w-xq)I

y - mx(* - Uq) - zswq -nxBcos - zB,. O M6.

M&,abM 4+~i+Mq+ lvw.pfCDb(k)(W XV 3 n (2.2)

(2.3)

1 = -Us, 9wceo 0 (2.4)

2



Equations 2.1 through 2.2 can be written in a more compact

form as,

a, a1 Uw + a, 2 Uq + al3z~aBM 0 + a13 xo~ca 0 + b, U 2 &,

b2 U
26 b+ d,('w.q~) +c, (w.q) (2.5)

4 w Uw + 2U 2zi +a3ac ,U&

(2.6)
b2 U

2 6bb+ dq(w,q) + c2(W,q)

where,

Dv= (Ma -Z*)(" -M#) - (Mx + Z#)(NX + *)

aDv= (Zw - 2CDEUam 00)(I, -M#) + (mx ;+ Z#) (M. + 2 CDE, Utan Od

a12D. = (m+Z q+ 2 CDEUI Ma 01 ,) (I,- M) +

(MXO+ Z 4)(Mq- Mx 0 -NIZ.Utwan 60- 2CD~E2 Utdm 00)

a2D (Mw. 2CDEIUta 00)(I - Z*)+ (mw(G+Mi#(Zw,- 2CgyE0 Utan 00)

a2D (Mq WG ML ZGa DI1on 0- 2 CDE 2 U tan0
(MxO +M*)(M+ Z q + 2 CDEI Utan 00)

(2.7)

a13D, = -(mG+ Z*)B

b1DW = (I7-M#)Z8 -(0 + Z)M&

3



b 2D =fre- Z*)M& + (mux 0 M+i) Z&

dq(w.q)Dv = (m - Z*)1q+ (mx a+M,))Jw

d,(w,q)D, = (lyJ-M 4 )I - (• a+ X4)lq

c1(w.q)D, (- I,-Mla•z)q 2 - (Roo+ Z m zwq

c2 (w.q)D, = - (m - Z,)mzwq- (auOM,)nmzq 2

In these equations the submersible is assumed to be

neutrally buoyant (W-B), and statically stable (z. > z.). Here

we can assume z. to be zero, hence z. = zG.

At steady state the cross flow drag integral terms Ix and

Ip have the form,

= CDw wlfb(x),* dP = CDw Iw.If b(x) xdb (2.8)

From equation (2.3) it is seen that w is equal to tane0 at

steady state. The Ib(x)dx term is computed numerically for the

SUBOFF model as E0, and fb(x)xdx term as E,. Therefore, the

cross flow drag terms become,

'it - -Cww Eo I, - CD W // El (2.9)

4



Because we have two rudders at the bow and the stern, our

system of equations is multi-input. To reduce this system into

a single input system the linear combination of the control

inputs will be modified into the following form,

J = J. (5b = a5. (2.10)

where a is the control surface coordination gain. The value

of a ranges from -1 to 1. The selection of the value of a will

allow the planes to operate as desired for the particular

maneuvering condition, i.e., a = 0 for no bow plane control,

a = -1 for bow plane and r4-ern plane opposed to each other,

yielding the maximum pitch moment, and a - 1 for bow and stern

plane control in the same direction, yielding the maximum

heave force.



x

4:4

FIGURE 2.1 Geometric representations of the basic

definitions.
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III. CONTROL LAW

A. INTRODUCTION

The control design problem can be expressed in state space

as follows,

=t A B& (3.1)

where the state vector is

*.

w

q (3.2)

Equation 3.1 in our case is,

60 0 1 0
a,.a19 -b ,,2k, ai# -b n2k2  a1 ,,-L' ,2k, -b p 2k4  w (3 .3 )

4 a2.3uz -bpu2k, a2 u-byb2k 2  a22--b2u 2k3  -bwu2k4  q

-u 1 0 0

Our aim is to find a controller which will assure us a

stable closed loop system. The only control input is the dive

plane angle, 8.

7



B. FEEDBACK CONTROL

1. Pole Placement

The full state feedback controller is a linear function of

the states and has the form,

S- - K x (3.4)

where K is the vector of feedback gains which are to be

determined in order to give the desired closed loop system

dynamics. Substituting equation 2.12 into 2.10 yields,

S= (A -BR )x (3 .5 )

The feedback gains K must be chosen such that A - BK has the

desired eigenvalues. The actual characteristic equation of the

closed loop system is given by,

det(A - BK - sI) - 0 (3.6)

The required values of K are obtained by matching coefficients

in the two polynomials of the actual and the desired

characteristic equations. Equation 3.5 becomes,

0 0 1 0'*~ 0

Sa,;,, a,,u a1• 0 w+ b]u 2  (3.7)

4 ao(, aua ata 0 q b2u 2

-U 1 0 1 0

The characteristic equation of the closed loop system is,

8



-, 0 1 0

d az, - blu 2k, a, 1a - b 2 k2 - s ai,2u - blu 2k -bu 2k,

a,,z,, - b2 2k, a3 jm -by 2k2 ap - bp 2k3- -bF 2k 4

-U 1 0 -,

which reduces to,

s 4 + (A 2 k2 + A3 k - E1 ) s 3 + (Bk-B 2k 2 - Bjk3 -Bk 4 - E2)s 2 +

(_ CA - C2k22-Ck 3- ES) + (-Dlk4-Dk) 0 (3.9)

where,

A2 - -B 4 - b, u2

A 3 = -B, = b2 u
2

82 ' (a22 b, - a.2 b2) U3

B3 = C1 = (all b2 - a2, bj) u3

C2 = D, = (a2 , b, -a,3 b2 ) Z= u2  (3.10)

C4 = (a 22 b, + b2 - a 1 2 b.) U3

D2 - (a 11 b2 - a2, bl) U'

E, = (a,, + a22 ) U

E2 - a2,zGB + (al 2 al - al a 22) u2

E3 - (a,3 a2, - all a2 3) znB u

Now, let's assume that we want to place the closed loop poles

at -p1 , -P 2 , -P 3, -p 4 to have the desired system response. Then

the desired characteristic equation is,

S 4,+61S'3+ a S 2+ aS s a 4 = 0 (3.11)

9



where,

21 - pA + p2 + p3 + pA

a2 " A P2 + p P3 +P Ap + P2 P3 + P AP + P3 P (3.12)

a. M P2 P3 p3 + P1 P2 pA + P1 P3 pA + P2 P3 PA

a. - p, P2 P3 A

The feedback gains can now be computed by eqt %g the

coefficients of equation 3.9 and 3.11,

A 2 k2 + A3 k3 - -a, - E,

B1 kz + B2 k2 + B3 k3 + B4 k4 - a2 + E2 (3.13)

C, k, + C, k2 + C4 k4 - a3 + f,

(DI + D2) k4 - a4

We established the method for placing the poles of the

system, but we also need to know the desired locations of the

poles.

2. Pole Location Selection

In a typical second order system control law design

transient response specifications are given. This results in

an allowable region in the s-plane where the desired location

of the poles can be obtained. For higher order systems the

concept of dominant roots can be employed. In selecting poles

the physics of the system must be considered. If the poles are

too negative, a small time constant will result, and the

system may not be able to react that fast. If we use big gains

10



K, this also means that the control effort will be large. In

practice there are limits based on actuator size and

saturation.

Considering the control law design to stabilize the

suimarine to a level flight path at e - 0 it is required that

the submarine return to the level flight, after some small

disturbances in e or z, within the time it takes for the

vehicle to travel three ship lengths. Since our model is 14

feet long and its velocity is 5 feet/sec., the required

recovery time is about 10 seconds. This means the time

constant is 3 seconds and the closed loop poles should be

placed at approximately -0.3.

After placing the poles using equation 3.13 the

control law is found to be,

5 = 0.9917 G + 0.8333 w + 0.6026 q - 0.0351 z (3.14)

C. FEEDFORKARD CONTROL

The previous discussion on feedback controller assures

closed loop stability, but it acts as a regulator in other

words takes all the states to zero values. If we have constant

disturbances or we want to track some reference value other

than zero we can not do this with state feedback alone.

ii



LYýýK 107 X, Ax

reference signal Fe.onwd gain sum Y CX+Ou
Linea•ized modei of plant

vector of feedback gains

FIGURE 3.1 Feedback and feedforward control application to

our linearized model

In the case of non-zero set points or constant

disturbances we again need to have the exact same full state

feedback to ensure closed loop stability. But we also need to

introduce an additional term to our controller in the form

u - - K x + k 0  (3.15)

12



where k. is the constant feedforward term. ko is given au

(Ref. 4],

k o - H"' (O) X0  (3.16)

where xO is the reference values of the states and H0'(s) is

the closed loop transfer function,

H,7 (a) - C (al - A + BK)"- B (3.17)

Another way of getting k0 is looking at the steady state

equations of motion. In steady state all the time derivatives

in equations 2.1 through 2.4 go to zero and we have,

W -- t oo (3.18)

(3.19)
Z86 ÷Z.w-IH= 0

-(f,- x,)B• So.-, z ,Bs ,+eMS6 +Mw + = 0 (3.20)

If the equation 3.19 is multiplied with MN and equation 3.20

with Z. and set equal to each other and plug in the equation

3.18, we have an equation depending only on 0.

(Z.,M g - M*,Z ) n 0eo xGB Zacos 0. + z B ZA, 0 3o. 1CD(EA4ElZ)fwa.ItO.I(3.21)Cl)(EVU8- H, Z8)tM Oo it= 00l

Where E. and E, are the integral terms computed numerically for

the Subof f model. The steady state value of 90 is

found from equation 3.20 by using a Newton-Raphson method

in Bifurl program in the Appendix. Then we can get 6 from

13



equation 3.19,

l, - ZW. -CDIm 0 JAIW Sol - Z,W (3.22)
Z a Z &

After getting 5, we easily find Jo from equation 3. 15,

k o n 5 + KX (3.23)

A plot of the steady state angle e, versus x. for different

values of z. is shown in Figure 3.2.

14
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FIGURE 3.2 Steady state pitch angle E. as metacentric

height varies
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IV. BIFURCATION ANALYSIS

A. STABILITY

The nonlinear equations of motion in the dive plane 2.1

through 2.4 can be expressed in a compact form as follows,

I =f(x) (4.1)

Where x is the state variable vector x-[6,w,q,z]. We know

that the equilibrium points, x0 of the system are defined by,

f(zo) - 0 (4.2)

This is a nonlinear system of algebraic equations and it

may have multiple solutions in x., which means that the

nonlinear system may have more than one positions of static

equilibrium. If we pick one equilibrium, x0 we can establish

its stability properties by linearization. The linearized

system becomes,

i-Ax (4.3)

where A is the Jacobian matrix of f (x) evaluated at x0,

A - A--• (41.4)

16



and the state has been defined to designate small deviations

from the equilibrium x0 ,

x -+ X-x0  (4.5)

In system dynamics as long as all eigenvalues of A have

negative real parts, we know that the linear system will be

stable. This means that the equilibrium x. will be stable for

the nonlinear system as well. This is in fact Lyapunov's

linearization technique.

B. BIFURCATION

Values of the nonlinear system parameters at which the

qualitative nature of the system's motion changes are known as

critical or bifurcation values. The phenomena of bifurcation,

i.e., quantitative change of parameters leading to qualitative

change of system properties, is the topic of bifurcation

theory. Euler buckling (Pitchfork bifurcation), limit cycles

(Hopf bifurcation) are common examples of bifurcation.

Classical definition of stability states, that the real

part of all the eigenvalues of the system must be negative.

Therefore, our initial investigations into the stability of

the SUBOFF model was to find those eigenvalues whose real

parts cross the imaginary axis. We used the bifurcation

analysis program, included in the Appendix, to calculate the

eigenvalues of the system.

17



By linearizing the equations of motion, equations 2.1

through 2.4 , the state space equations of the dynamic system

can be written in the form,

2=Ax+Bu (4.5)

where,

u - K x (4.6)

and K is the vector of controller gains, as calculated by pole

placement in equations 3.13. The eigenvalues of the system are

found by solving,

detlA-BK-sII - 0 (4.7)

In the bifurcation program a pseudo-root locus method is

employed where the time constant, T., is fixed. The constant

T, fixes to placement of the system poles at a given nominal

forward speed U0 and then the model speed, U, is varied

incrementally with the system eigenvalues calculated at each

speed increment. When the real part of an eigenvalue changes

sign between the limits of a speed increment a bisection

method is employed to find the speed where the real part of

the eigenvalue equals zero.

For each point where the real part of an eigenvalue

crosses the imaginary axis the associated Tc and U are plotted

on a bifurcation map. This map delineates the regions of

18



classical stability (all eigenvalues on the left hand plane)

from the regions of instability. A family of bifurcation maps

were generated by varying nominal speed, U0 , initial

stability, Z,., and longitudinal center of gravity/buoyancy

separation, x. of the submersible.

Figure (4.1) shows a typical bifurcation map with its five

distinct regions [Ref. 1]. Region I is the area of classical

stability. In region II there is one real positive eigenvalue

which is indicative of a pitchfork bifurcation. Pitchfork

bifurcations of this model were previously examined by Reidel

[Ref. 1]. Regions III,IV, and V have at least one pair of

complex conjugate eigenvalues with a positive real part. This

would indicate that there should be an unstable oscillatory

behavior for the model.

C. RESULTS AND DISCUSSION

The classical stability region in bifurcation maps lies

between pitchfork and Hopf bifurcation boundaries. The limits

or parameters must be defined for the system designer prior to

starting the design. By maximizing the region of stability we

can give the designer the most leeway in his work. There are

19



Ei PITCHFORK B.

2 ............ ........... STA B LEL R E G'IO N ........... .................

.....-....... ..- - ... .......... .. ..... ...... ........ ...........

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

FORWARD VELOCITY (NONDIMENSIONAL)

FIGURE 4.1 A typical bifurcation map showing the five

distinct regions
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two parameters that we used to change the bifurcation maps,

the longitudinal separation between center of gravity and

center of buoyancy, x,. and the initial stability, z•.

First we look at the change in x.. In figures 4.2 through

4.7 we plotted bifurcation curves for different initial

stabilities as x.. varies. We can see that as x., increases

the Hopf bifurcation branches Hi an H2 move towards higher

speeds and time constants and thus increasing the stability

area. The H3 branch however remains constant.

The other important point that we observed is that the

system becomes unstable at nominal speed at higher time

constants. This is unexpected because we are designing around

our nominal speed. A more careful examination in the trimmed

case shows that the actual forward velocity becomes, 1 u 2+w2 .

Therefore the system may become stable at a value of u other

than nominal.

The next parameter we examined was the initial stability,

ZB. Figures 4.8 through 4.14 show the effect of varying z.

from .2 to .4 ft for different x,, values. The H3 branch

remains constant while the upper speed H2 branch moves down

effectively decreasing the area of stability. The low speed

curve Hi moves upwards and increases the low speed area of

stability.

21
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E- xgxgO
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VELOCITY (NONDIMENSIONAL)

FIGURE 4.2 Bifurcation map as xg changes between xginO and

xg--.2, zg-.2.
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45 -.. t-....

xg. I cg

jxg~O

0.4 0.6 0.8 1 1.2 1.4 186 1.8

VELOCITY (NONDIMENSIONAL)

FIGURE 4.3 Bifurcation map as xg changes between xg-O and

xg.*2, zg-.2*
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5 -. - ..-.. - -... - - .--. . ....

!xg=.-3

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

VELOCITY (NONDIMENSIONAL)

FIGURE 4.4 Bifurcation map as xg changes between xgO0 and

xgin-.3, zg-.3.
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5 ........-......
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. .... ......... ...... ..

z

0 3 ... ........ ...
xgxgr
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FXGURM 4.*5 Bifurcation map an xg changes between xg-0 and

xgm.3,, zg-.3.
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a 3--
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FIGUR 4.6 Bifurcation map as xg changes between xqumO and

xgu.-.3, zg-.4.
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VELOCITY (NONDIMENSIONAL)

FIGURE 4.7 Bifurcation map as xg changes between xg-0 and

xgum.3, zg-.4.
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FIGURE 4.8 The effects of changing zg on the bifurcation

maps, xg-.3.
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V. CONCLUSIONS AND RPCO NDATION8

A. CONCLUSIONS

Hopf bifurcation analysis is a very useful design tool in

the design and evaluation phase. Hopf bifurcation analysis and

an identification program that can evaluate the hydrodynamic

coefficients for the submersible vehicle will be very useful

and save money and time by reducing the amount of model

testing. An effective set of control system parameters can be

generated in this process that will be optimal for the final

design of the submersible.

This type of analysis can set the limits of the ranges of

important parameters such as metacentric height and

longitudinal separation of buoyancy/gravity centers. As we

have seen changes in these two parameters can have dramatic

effects on stability. It was found that the moderate speed

region of stability increases with increasing metacentric

height. The same is not true, however, for high speeds. The

longitudinal separation of center of gravity/buoyancy can have

a profound effect on stability. It was found that the vehicle

may be unstable even at nominal speed. This was attributed to

the fact that at high trim angles, the feedback gains which

are computed at zero trim, can no longer guarantee stability.
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B • RECOISUNDAT IONS

The bifurcation analysis program should be expanded to

evaluate the performance of the submarine including effects of

external forces such as wave effects, currents, and free

surface effects.
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APPENDIX - BIFURCATION ANALYSIS PROGRAM

C PROGRAM BIFURI FOR

C BIFURCATION ANALYSIS

C PARAMETERS ARE: TC VS. U

IMPLICIT DOUBLE PRECISION (A-HKO-Z)

DOUBLE PRECISION Ki J2",KK4L.,MQDOT,MWDOT,MQ,MWMDS,MDBMD,

& MASS,IY,P 1,P2,P3,P4,XGB,ZGB

DIMENSION A(4,4),FVI (4),IVl (4),ZZ4,4),WR(4),WI(4),XL25),

& BR(25),VECO(25),VECI1(25),VEC2(25)

COMMON P1,P2,P3,P4

C

OPEN (I11,FILE='BIF 1.RES',STATUS-`NEW`)

OPEN (I 2,FILE---BIF2.RES',STATUS--NEW)

OPEN (1 3,FILE---BIF3 .RES',STATUS---NEW')

C NUMERIC INFO OF DARPA SUBOFF MODEL

WEIGHT= 1556.2363

BUO =1556.2363

L =13.9792

IY =561.32

G =32.2

MASS =WEIGHTI/G

RHO =1.94

XB =0.0

ZB =0.0

CD =0.4
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CD =o.5*CD*RHO

C

WRITE ()'ENTER MIN, MAX, AND INCREMENTS IN Tc (nondim)

READ ()TCM[IN,TCM[AXITC
WRITE (,)'ENTER MIN, MAX~ AND INCREMENTS IN U (nondim)'

READ (¶)UMIN,UMAXIU
C WRITE (*,*) 'ENTER NOMINAL SPEED'

C READ (*,*) UO

WRITE (,)'ENTER XG AND ZG'

READ (,)XGZG

U0=9

C

ZGB=ZG-ZB

XGB=XG-XB

TCMIN=TCMIN*L/UO

TCMAX=TCMAX*IJUO

UM[IN =UMI4N*UO

UMAX =UMAX*UO

C HYDRODYNAM[IC COEFFICIENTS

ZQDOT=-~6.33OOE-O4*O.5*RHO*L**4

ZWDOT=-l .4529E-O2O0.5*RHO*L**3

ZQ = 7.545OE-O3*O.5*RHO*L**3

ZW =-1.391OE-02*0.5*RHO*L**2

ZDS =-5.6O3OE-O3*O.5*RHO*L**2

ZDB =-5.6030E-03 *O.5*RHO*L**2

MQDOT=-8.8OOOE-O4*O. 5*1UIO*L**5

MWDOT=-5.6lOOE-O4*O. 5*RHO*L**4
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MQ =-3 .7020E-03 '0. 5'RHO*L"*4

MW = 1.0324E-02*0.5*RHO*L*3

MDS =-2.4O90E-03*0.5*RHO*L**3

MDB = 2.4090E-03*0.5*RHO*L**3

XL(1)=O.0

XL(2)=0. I

XL(3)=0.2

XL(4)=O.3

XL(5)=0.4

XL(6)=0. 5

WL7)=0.6

XL(8)=0.7

XL(9)=1.0

XL(1O)=2.0

WL( 11)--3.0

XL( 12)=4.0

XL(1I3)=7.7 143

WL14)--10.0

XL(15)=15. 1429

XL(16)=-16.0

XL(17)=17.0

XL( 18)=1 8.0

XL(19)=19.0

XL(20)=20.0

XL(21)=20. I
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XL(22)-20.2

XL(23)=20.3

XL(24)-20.4

XL(25)=20.4 167

DO 102 N= 1,25

XL(N) - (L/20.)*XL(N)- in.

102 CONTINUE

BR(1)=0.0

BR(2)=0.485

BR(3)=0. 658

BR(4)=0.778

BR(5)=0.87 1

BR(6)=0.945

BR(7)--1.010

BR(8)--l.060

BR(9)--1.18

BR(10)=1.41

BR(1 1)--I.57

BR(12)=1.66

BR(13)=1.67

BR( 14)=I .67

BR(15)=1.67

BR(16)--l.63

BR(17)-1 .37

BR(18)=0.919

BR(19)=0.448

BR(20)=0. 195
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BR(21)=0. 188

BR(22)=O. 168

BR(23)-O. 132

BR(24)=O.053

BR(25)=O.0

DO 104 K=1,25

VECO(K)=BR(K)

VECI1(K)-XLK)*BR(K)

VEC2(K)=XL(K)*XL(K)*BR(K)

104 CONTINUE

CALL TRAP(25,VECO,XL,EO)

CALL TRAP(25,VEC 1,XL,E 1)

CALL TRAP(25,VEC2,XL,E2)

C

ALPHA=0.0

ZD-ZDS+ALPHA*ZDD

MD=MDS+ALPHA*MDB

C CALCULATING THE SS PITCH ANGLE 00

C WITH NEWTON RAPHSON METHOD

P1= ZW*MlD - M[W*ZD

P2= XG*BUO*ZD

P3= ZG*BUO*ZD

P4-- CD(VM - ZD*El)

WJ'fM*,*) P1,P2,P3,P4

EPSI=.OOOOOOO1

THETAO=0
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IF(XGB.GT.0) P4~-- *P4

IS DO 19 1=1,2000

FT=FUNC(THETAO)

DFT=DFLJNC(THETAO)

DELT=FT/DFT

THETAO-THETAO-DELT

IF(ABS(DELT)-EPSI) 20,20,19

19 CONTINE

FT=FUJNC(THETAO)

20 WRITE(*,*) THETAO, FT

C

DV=MAASS-ZWDOT)*(IY-MQDOT)MAS*XCG+ZQDOT)*(AMAS*XG+MWDOT)

All DV=(IY-MQDOT)*(ZW-2*CD*EO*U*TAN(THETAO))

& +(MASS*XG+sZQDOT)*(MW+I2*CD*E1 U*TAN(THETAO))

A! 2DV=QIY-MQDOT)*(MASS+ZQ+2*CD*El U*TAN(THETAO))+

& (MASS*XG+ZQDOT)

& *fQ-MASS*XG-MASS*ZG*U*TAN(nHETAO)ý.2*CD*E2*U*TAN(THETAO))

Al 3DV=-{MASS*XG+ZQDOT)*WEIGHT

B 1DV =(IY-MQDOT)*ZD+(MASS*XGi+ZQDOT)*MD

A2lDV=(MASS-ZWDOT)*(MW+2*CD*El *U*TANJ(THlETAO))

& +(MASS*XG+,MWDOT)*(ZW-2*CD*EO*U*TAN('rETAO))

A22DV=(MASSZWDOT)*(MQ-MASS*XG-MASS*ZG*U*TAN(THEAO)-2*CD*E2*U

& *TNTEA)+MASX+WO)

& (MASS+ZQ±2*CD*EI *U*TAN(THTAO))

A23DV=-(MASS-ZWDOT)*WEIGHT
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B2DV =(MAS-ZWDOT)*MD+(MASSXG+MWDOT)*ZD

C

Al 1=Al IDV/DV

A12=Al2DV/DV

A13=Al3DV/DV

A21I=A2 lDV/DV

A22=A22DV/DV

A23=A23DV/DV

BI =BIDV/DV

B2 =B2DV /DV

C

EPS =l.D-5

ILMAX=1 500

C

DO 1 I=l,ITC

WRITE (*,2001) IITC

TC=TCMIN+(I- 1)*(TCMAX-TCM1N)/QTC- 1)

POLE= 1.0/TC

ALPHA3=4.O*POLE

ALPHA2=6.0*POLE**2

ALPHAl=4.0*POLE**3

4 4IPHAO= POLE**4

K4=ALPHAOI((B 1*A21I B2*A1 1)*UO* *4+(B 1*i&23.B2*A13)*ZGB*U0**2)

A2M=BI *UO**2

A3M=B2*UO* *2

AOM=-(A1 1+A22)*U0-ALPHA3

B 1M=B2*UO**2
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B2M-(B2*A12-B1 *A22)*UO**3

B3M=(BP*A2I-B2*A1 1)*UO**3

BOM=(A1 1 *A22-A21*I 12)*UO**2-A23 ZGB-ALPHA2-B 1*UO*UO*K4~

CIM=(B2*A1 1-BI*A21)*UO**3

C2M=(B I *A23-B2*A13)*ZGB*UO**2

COM=(A1 3*A2 1-Af *A1 1 )*ZGB*UO+ALPHA1 -(B2+B I*A22-B2*A 12)*K4*UO**3

K2=CI1M*BOM*A3M-B IM*COM*A3M-C IM*B3M*AOM

K2=K21(CI1M'B2M*A3M-B 1M*C2M*A3M-C 1MB3M*A2M)

K1=(COM-C2M*K2)/C M

K3=(AOM-A2M*K2)/A3M

C

DO 2J=1,IU

U= UMIN+(J- 1)*(LJMAX-UM1N)/(IUJ-1)

A( 1,1)=O.ODO

A(1,2)=O.ODO

A(1,3)=1 .ODO

A(1I,4)=O.ODO

A(2, l)=-A13*(XGB*SIN(THETAO)-ZGB*COS(THETAO))+B1 *U*U*K1

A(2,2)-=A1 1U 4BI*U*U*K2

A(2,3)=A12*U +BI *U*U*K3

A(2,4)-- BI*U*U*K4

A(3 , 1)=-A23 *(XGB*SIN(THETAO)..ZGB*COS(THTAO))+B2*U*U*Kl

A(3,2)= A21*U +B2*U*U*K2

A(3,3)-- A22*U +B2*U*U*K3

A(3,4)- B2*U*U*K4

A(4,1I)=- U

A(4,2)= 1.ODO
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A(4,3)= O.ODO

A(4,4)= 0.ODO

C

CALL RG(4,4,AW,W,WI,0,ZZZ,IVI1,FVI ,IER)

CALL DSTABL(DEOS,WRWIFREQ)

C

IF (J.GT. 1) GO TO 10

DEOSOO- DEOS

UQO = U

LL= 0

GO TO 2

10 DEOSNN = DEOS

UNN =U

PR= DEOSNN*DEOSOO

IF (PR.GT.0.DO) GO TO 3

LL = LL+l

IF (LL.GT.3) STOP 1000

IIL=0

UO UOO,

UN= UNN

DEOSO = DEOSOO

DEOSN = DEOSNN

6 UL UO

UR =UN

DEOSL = DEOSO

DEOSR = DEOSN

C U = (UL+UR)/2.DO
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ALPHA - (DEOSL-DEOSR)/QJL-UR)

U =- (DEOSL-ALPHA*UL)/ALPHA

A(l,l) = O.ODO

A(1,2) = O.ODO

A(1,3) = LODO

A(1,4) = O.ODO

A(2, 1) = Al 3*(XGB*SIN(THETAO)-ZGB*COS(TjHETAO))+B I*UU*K 1

A(2,2) = All~u +Bi*U*U*K2

A(2,3 )=AIZU +Bl*U*U*K3

A(2,4 )=BI*U*U*K4

A(3, 1) = A23 *(XGB*SIN(fljETAO}..ZGB*COS(1THETAO))+B2*U*U*K 1

A(3,2) = A21 U +B2*U*U*K2

A(3,3) = A22*U +B2*U*U*K3

A(3,4) = B2*U*U*K4

A(4,l1) =-U

A(4,2)= LODO

A(4,3) O.ODO

A(4,4 )= O.ODO

C

CALL RG(4,4,AWRW1O,ZZZIVl ,PV1,IERR)

CALL DSTABL(DEOS,WRWIFREQ)

C

DEOSM = DEOS

UM=U

PRL = DEOSL*DEOSM

PRR = DEOSR*DEOSM

IF (PRL.GT.O.DO) GO TO 5
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UO UL

UN =UM

DEOSO = DEOSL

DEOSN = DEOSM

EL = IL+l

IF (IL.GT.ILMAX) STOP 3 100

DIF = DABStUL-UM)

IF (DIF.GT.EPS) GO TO 6

U =UM

GO TO 4

5 IF (PRR.GT.O.DO) STOP 3200

UO =UM

UN = UR

DEOSO, = DEOSM

DEOSN = DEOSR

EL = IL+1

IF (IL.GT.ILMAX) STOP 3 100

DIP = DAB S(UM-UR)

IF (DEF.GT.EPS) GO TO 6

U =UM

4 LLL = 10+LL

WRITE (LLL.*) UIUO,TC*UOIL

3 UOO =UNN

DEOSQO = DEOSNN

2 CONTiNUE

1 CON7LNUE

C
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2001 FORMAT (215)

END

SUBROUTINE DSTABL(DEOS,WRWIOMEGA)

IMPLICIT DOUBLE PRECISION (A-HO-Z)

DIMENSION WR(4),WI(4)

DEOS=-...OD+20

DOI I=1,4

IF (WR(I).LT.DEOS) GO TO 1

DEOS = WR(I)

U=I

1 CONTINUE

OMEGA = WI(IJ)

OMEGA = DABS(OMEGA)

RETURN

END

C

SUBROUTINE TRAP(N,AB,OUT)

C NUMERICAL INTEGRATION ROUTINE USING THE TRAPEZOIDAL RULE

IMPLICIT DOUBLE PRECISION (A-HO-Z)

DIMENSION A(I),B(l)

NI = N-1

OUT = 0.0

DO I I= I,NI

OUTI = 0.5*(A(I)+A(I+I))*(B(I+I)-B(I))

OUT = OUT+OUT 1
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I CONTINUE

RETURN

END

C FUNCTIONS USED IN NEWTON RAPHSON ROUTINE

FUNCTION FUNC(THETAO)

IMPLICIT DOUBLE PRECISION (A-HO-Z)

COMMON PIP2,P3,P4

FUNC = P1*DTAN(THETAO) + P2*DCOS(THETAO) + P3*DSIN(THETAO)

& + P4*(DTAN(THETAO))**2

RETURN

END

FUNCTION DFUNC(THETAO)

IMPLICIT DOUBLE PRECISION (A-I4O-Z)

COMMON PIP2,P3,P4

DFUNC= Pl*(1.DOIDCOS(THETAO))**2 - P2*DSIN(THiETAO) +

& P3*DC(OSMIEJJTA0) + P4*2.DO*DTAN(THETAO)*(1 .DOIDCOS(T]HETAO))**2.DO

RETURN

END
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